

Responsive Microgels:

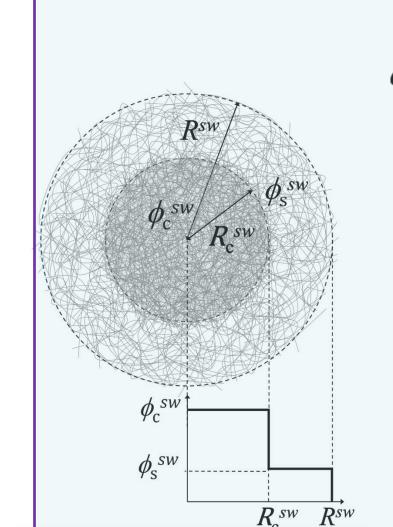
Connecting morphology, free energy and collective behaviour

A. Moncho Jordá^{1,2}, A. Cuetos³, M. A. Fernández-Rodríguez¹, J. Dzubiella⁴, A. Patti^{1,2,5}

¹Department of Applied Physics, University of Granada, Avenida Fuente Nueva s/n, 18071 Granada, Spain ²Carlos I Institute for Theoretical and Computational Physics, University of Granada, Av. Fuente Nueva s/n, 18071, Granada, Spain ³Department of Physical, Chemical and Natural Systems, Pablo Olavide University, Seville, Spain ⁴Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Germany

⁵Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK

INTRODUCTION


Core-shell microgels are soft, thermoresponsive particles whose internal architecture strongly influences their mechanical and collective behaviour [1]. Traditional models often neglect the heterogeneity between the dense core and softer shell, limiting predictions under compression [2,3]. Here, we develop a coarse-grained framework that captures the distinct mechanical properties of core and shell regions, enabling self-consistent modelling of swelling, compressibility, and particle-particle interactions. This approach provides a foundation to understand how particle softness and internal structure govern the phase behaviour and microstructure of concentrated microgel suspensions [4].

OBJECTIVES

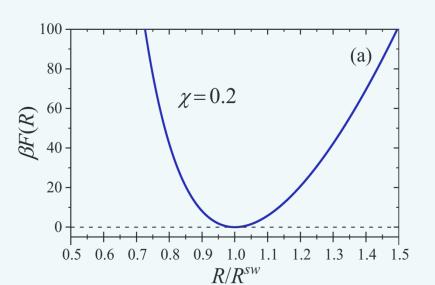
- Developing a coarse-grained framework that distinguishes core and shell contributions to microgel mechanics
- Modelling swelling, compressibility, and internal mechanical equilibrium under thermal and mechanical stimuli.
- Implementing a responsive multi-Hertzian pair potential to capture particle-particle **interactions** in concentrated suspensions.
- Investigating how particle-level heterogeneity and softness influence microstructure, packing, and phase behaviour.

THEORY

Polymer distribution of a swollen microgel

$$\phi_{c}^{sw} = \frac{3v_{mon}}{(R_{c}^{sw})^{3}} \int_{0}^{R_{c}^{sw}} r^{2} \rho(r) dr = \rho_{c}^{sw} v_{mon} \qquad n_{i} = \left(\frac{k}{\phi_{i}^{sw}}\right)^{3/4} \quad i = c, s$$

$$\int_{0}^{R_{c}^{sw}} r^{2} \rho(r) dr$$


$$\phi_{s}^{sw} = \frac{3v_{mon}}{(R^{sw})^{3} - (R_{c}^{sw})^{3}} \int_{R_{c}^{sw}}^{R^{sw}} r^{2} \rho(r) dr$$

$$= \frac{1}{10} \frac{\phi_{c}^{sw}}{(R^{sw})^{3} - (R_{c}^{sw})^{3}} [(R^{sw})^{3} + (R^{sw})^{2} (R_{m} + R_{c}^{sw})$$

$$+ R^{sw} (R_{m}^{2} + R_{m} R_{c}^{sw} + (R_{c}^{sw})^{2}) + R_{m}^{3} + R_{m}^{2} R_{c}^{sw}$$

Free energy

Within the Flory-Rehner theory, the intrinsic free energy of the \approx microgel is split into three additive contributions: elastic, solvent-induced and ionic free-energy terms

$$F_{i}(\phi_{i}) = N_{\text{ch},i}k_{B}T \left[\frac{3}{2} \left(\left(\frac{\phi_{0i}}{\phi_{i}} \right)^{2/3} - \ln\left(\frac{\phi_{0i}}{\phi_{i}} \right)^{1/3} - 1 \right) + \ln\phi_{i} + n_{i}B \left(\frac{1}{\phi_{i}} - 1 \right) \ln\left(1 - \phi_{i} \right) + n_{i}B\chi(1 - \phi_{i}) + f_{i}\ln\left(\frac{\phi_{i}}{\phi_{0i}} \right) \right]$$

 $+ R_{\rm m}(R_{\rm c}^{\rm sw})^2 - 9(R_{\rm c}^{\rm sw})^3$

 $F_{\rm elastic}$

 F_{solvent} $F_{\rm ion}$

 $R_{c} = R_{c}^{sw} \left(\frac{\phi_{c}^{sw}}{\phi_{c}} \right)^{1/3}$

Mechanical Properties of Compressed Microgels

 $\Pi_{c}(\phi_{c}) = \Pi_{s}(\phi_{s})$ mechanical equilibrium $\prod_{i} = -(1/v_{\text{solv}})(\partial F_{i}/\partial N_{\text{solv}})_{T} \ (i = c, s)$

$$R = \left[R_{c}^{3} + \frac{\phi_{s}^{sw}}{\phi_{s}} ((R^{sw})^{3} - (R_{c}^{sw})^{3}) \right]^{1/2}$$

 $K_i(\phi_i) = \phi_i \left(\frac{\partial \Pi_i}{\partial \phi_i} \right)_T \qquad Y_i(R) \approx \frac{3}{2} k_{\rm B} T \frac{N_{{\rm ch},i}}{V_i} \qquad \sigma_i(\phi_i) = \frac{3K_i - Y_i}{6K_i}$ Bulk modulus

Young modulus

Poisson's ratio

Pair interaction between core-shell microgels

$$u(r) = u_{cc}(r; R_c, R'_c) + u_{cs}(r; R_c, R'_s) + u_{sc}(r; R_s, R'_c) + u_{ss}(r; R_s, R'_s)$$

$$\beta u_{ij}(r; R_i, R'_j) = \epsilon_{ij}(R_i, R'_j) \left(1 - \frac{r}{R_i + R'_j}\right)^{5/2} \theta(R_i + R'_j - r)$$

 $\epsilon_{ij}(R_i, R'_j) = \frac{8C}{15k_pT} A_{\text{eff,ij}}(R_i + R'_j)^2 (R_j R'_j)^{1/2}$ i, j = c, s

CONCLUSIONS

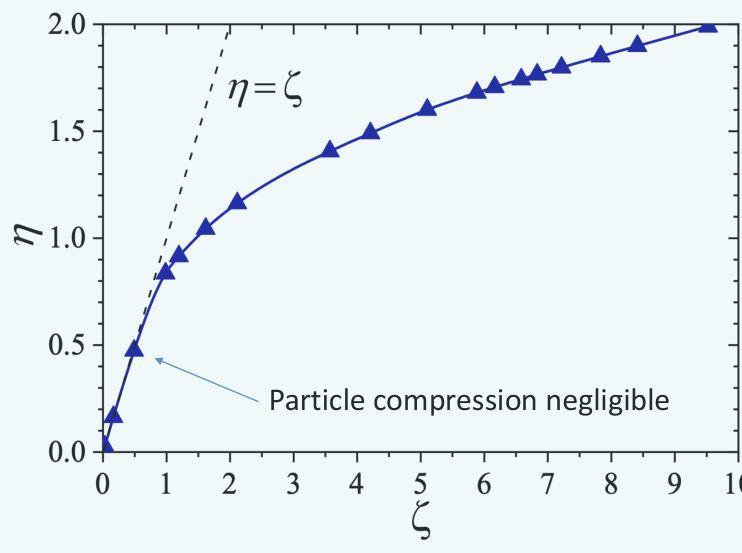
We developed a coarse-grained framework capturing the heterogeneous core—shell structure and mechanical response of microgels, enabling self-consistent modeling of swelling, compressibility, and particle interactions. Simulations with a responsive multi-Hertzian potential reproduce key features of concentrated suspensions, including size distribution evolution, effective packing fraction, and structural correlations. Our results show that particle-level softness and internal heterogeneity critically govern collective behavior and phase transitions, highlighting the need for models beyond fixed-shape or single-modulus descriptions. This framework provides a versatile basis for studying microgels under confinement, crowding, or external stimuli and can extend to interfacial or multicomponent systems.

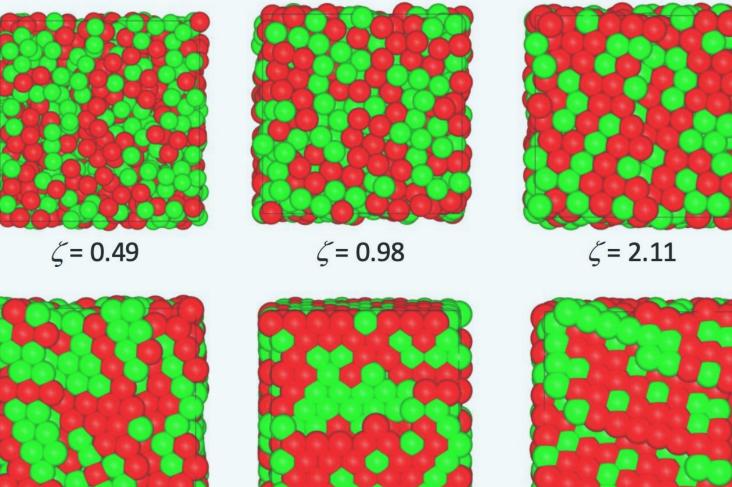
REFERENCES

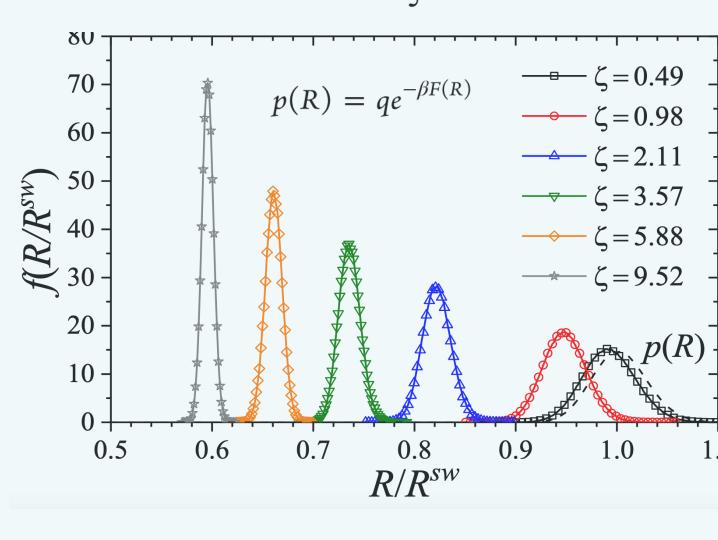
- [1] M. A. C. Stuart *et al.*, Nat. Mater., *9*, 101–113, **2010**
- [2] M. Urich et al., Soft Matter, 12, 9086–9094, **2016**
- [3] A. Scotti *et al.*, Chem. Rev., *122*, 11675–11700, **2022**
- [4] A. Moncho et al., Macromolecules 2025, 58, 19, 10659–10676, **2025**

SIMULATION

Simulation Setup

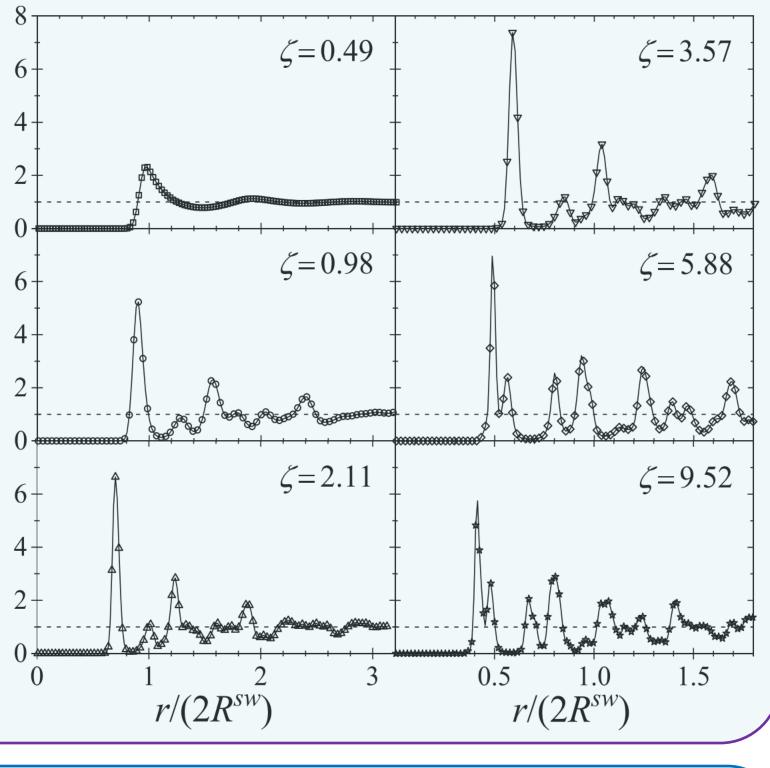

- Monte Carlo (MC) simulations in NPT ensemble
- Cubic box with periodic boundaries
- -N = 1000 spherical particles
- Interaction: multi-Hertzian potential
- Conditions:
- $T^* = T/T_{LCST} = 0.9487$
- $P^* = 8(R_{sw})^3 P/(k_B T_{LCST}) = 0.05 13,000$


Simulation Procedure


- Each MC cycle: N trial moves
- Random particle:
- ullet Displaced $(r o r+\Delta r)$
- ullet Resized $(R o R+\Delta R)$
- Box volume change: $(V_T o V_T + \Delta V)$
- Move probabilities:
- 80% displacement
- 20% size change

Volume Fractions

- The nominal volume fraction ζ
 - Is the volume fraction if all particles were fully swolle
 - Based on the parent size distribution p(R)
- The effective volume fraction η • Reflects instantaneous particle sizes
 - Captures the system's size polydispersity
- $\zeta = \frac{4}{3}\pi \frac{N}{V_{T}} \int R^{3} p(R) dR \qquad \eta = \frac{4}{3}\pi \frac{N}{V_{T}} \int R^{3} f(R) dR$



$\zeta = 5.88$ $\zeta = 9.52$ $\zeta = 3.57$ **Crystalline Order at Different Volume Fractions**

- Intermediate volume fractions:
 - Mixed HCP and FCC domains with defects
 - Example at $\zeta = 3.57$:
 - ~47% of particles in HCP environments
 - ~41% in FCC environments
 - <1% in BCC environments
 - Remaining particles show no identifiable crystalline order
- Higher volume fractions: • $\zeta=\mathbf{5.88}$ and $\zeta=\mathbf{9.52}$
 - >80% of particles adopt BCC environments
 - Remaining particles mostly disordered
 - Negligible fraction exhibits HCP or FCC order

ACNOWLEDGMENTS

- MICIU/AEI/10.13039/501100011033 and ERDF A way of making Europe (PID2022-136540NB-I00, PID2020-116615RA-I00, PID2023-1493870B-I00, PID2023-1471350B-I00);
- Plan Propio of the University of Granada (Project PPVS2018-08);
- Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía, and by FEDER "Andalucía 2021-2027" (EMC21_00008, CING-208-UGR23, P21_00015);
 - NextGenerationEU program and the Spanish Ministry of Universities (María Zambrano fellowship),

e-mail: moncho@ugr.es – apatti@ugr.es